Linear transformations Cheat Sheet

A linear transformation describes how a general point is transformed. The new point is called the image.

Properties

A linear transformation only involves linear terms in x and y. Below are three different transformations. The only one that is a **linear** transformation is T since the transformation matrix has all entries written in the form ax + by.

$$S: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+1 \\ y-8 \end{pmatrix} \qquad T: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 4x-y \\ x+2y \end{pmatrix} \qquad U: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 4y \\ -x^2 \end{pmatrix}$$

- Any linear transformation can be represented by a matrix
- Linear transformations always map the origin onto itself.
- The linear transformation $T: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$ can be represented by the matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Any linear transformation can be defined by its effect on the unit vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. You can use the following fact to find the transformation that a given matrix represents.

If
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ d \\ d \end{pmatrix}$

We find what happens to the unit vectors under <i>M</i> :	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$
Drawing a diagram to visualise the effect M had on the unit vectors:	$\times \xrightarrow{(i')} (i') \xrightarrow{(i')} \times \xrightarrow{(i')} (i') \xrightarrow{(i')} \times \xrightarrow{(i')} (i$
The unit vectors have been reflected in	(1,0) is unchanged by <i>M</i> while $(0,1)$ is transformed to $(0,-1)$.
the $x - axis$.	We can conclude that M represents a reflection in the x –axis.

Reflections, rotations, enlargements and stretches

- Points which are mapped to themselves under a given transformation are known as invariant points.
- Lines which are mapped to themselves under a given transformation are known as invariant lines.

The below table details the different matrices that correspond to particular transformations you need to be familiar with, as well as their respective invariant points and lines. You will be given the rotation matrix in the formula booklet, as well as the matrix for a reflection in the line $y = (tan\theta)x$.

Transformation	Matrix	Invariant points	Invariant lines
Reflection in the y —axis	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	All points on the y —axis	x = 0 and $y = k$ for any k
Reflection in the x —axis	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	All points on the x —axis	y = 0 and $x = k$ for any k
Reflection in the line $y = x$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	All points on the line $y = x$	The lines $y = -x$ and $y = -x + k$ for any k
Reflection in the line $y = -x$	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	All points on the line $y = -x$	The lines $y = -x$ and $y = x + k$ for any k
Rotation through angle $ heta$ anticlockwise about the origin	$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$	Only the origin (0,0)	For $\theta \neq 180^{\circ}$ there are no invariant lines. For $\theta = 180^{\circ}$ any line passing through the origin is an invariant line.
Stretch of scale factor a parallel to the x -axis and a stretch of scale factor b parallel to the y -axis If $a = b$, the transformation is an enlargement with scale factor a	$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$	Only the origin (0,0)	The x and y axes.
Stretch of scale factor a parallel to the x –axis only	$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$	All points on the y —axis	Any line parallel to the x —axis
Stretch of scale factor b parallel to the y –axis only	$\begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix}$	All points on the x —axis	Any line parallel to the y —axis

Transformation	Matrix
Reflection in the plane $x = 0$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Reflection in the plane $y = 0$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Reflection in the plane $z = 0$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
Rotation anticlockwise, angle θ , about the x —axis	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$
Rotation anticlockwise, angle $ heta$, about the y —axis	$\begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$
Rotation anticlockwise, angle θ , about the z —axis	$\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$

 $\bigcirc \bigcirc \bigcirc$

If A is a matrix representing a transformation, then the matrix A^{-1} has the effect of reversing the transformation described by A.

Example 4: $B = \begin{pmatrix} 2 & 4 \\ -2 & -5 \end{pmatrix}$ Find the coordinates (x,y)

Find the inverse matrix B

Form an equation to find

Perform calculations to fir

Finding invariant points and lines represent a reflection, rotation, enlargement or stretch.

system $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} X \\ Y \end{pmatrix}$ for X and Y.

Example 5: $P = \begin{pmatrix} 3 & 3 \\ 4 & 7 \end{pmatrix}$ The matrix P represents a linear transformation, T, of the plane. (a) Describe the invariant points of the transformation T. (b) Describe the invariant lines of the transformation T.

(a) This is the system we n

|--|

- Simplifying the first equation
- Simplifying the second equ
- Both equations yield the sa

can confirm we have the co

(b) This is the system we n

Equating both rows:

Taking [1] and substituting Simplifying the resultant e

Factoring out the X:

Factorising the quadratic in

Now we need to think: what

and C take so that this equ i.e. what could *M* and *C* be RHS?

Notice that another solution

-2/3 and C = 0.

Edexcel Core Pure 1

The matrix B represents a linear transformation, T, which maps coordinates (x,y) to position (8,12).

-1	$B^{-1} = \frac{1}{\det B} \begin{pmatrix} -5 & -4 \\ 2 & 2 \end{pmatrix} = \frac{1}{-2} \begin{pmatrix} -5 & -4 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 2.5 & 2 \\ -1 & -1 \end{pmatrix}$
(x,y)	$B\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \end{pmatrix} \implies \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = B^{-1} \begin{pmatrix} 8 \\ 12 \end{pmatrix}$
nd (x,y)	$\binom{x}{y} = B^{-1} \binom{8}{12} = \binom{2.5 \ 2}{-1} \binom{8}{12} = \binom{44}{-20}$

Some questions will require you to find the points and/or lines that are invariant under a transformation that does not

• To find the invariant points under a transformation represented by $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, you need to solve the

• To find the invariant lines under a transformation represented by $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, you need to solve the system $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} X \\ MX + C \end{pmatrix} = \begin{pmatrix} X' \\ MX' + C \end{pmatrix}$ for *M* and *C*.

need to solve:	$\begin{pmatrix} 3 & 3 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} X \\ Y \end{pmatrix}$
	$\Rightarrow \binom{3X+3Y}{4X+7Y} = \binom{X}{Y}$
	3X + 3Y = X [1] 4X + 7Y = Y [2]
tion, making Y the	$2X + 3Y = 0 \Rightarrow Y = -\frac{2}{3}X$
uation, making Y the	$4X + 6Y = 0 \Rightarrow Y = -\frac{4}{6}X = -\frac{2}{3}X$
same result, so we correct conclusion:	Both equations are consistent; the invariant points lie on the line $Y = -\frac{2}{3}X$.
need to solve:	$\begin{pmatrix} 3 & 3 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} X \\ MX + C \end{pmatrix} = \begin{pmatrix} X' \\ MX' + C \end{pmatrix}$ $\begin{pmatrix} 3X + 3(MX + C) \\ 4X + 7(MX + C) \end{pmatrix} = \begin{pmatrix} X' \\ MX' + C \end{pmatrix}$
	3X + 3(MX + C) = X' $4X + 7(MX + C) = MX' + C$ [2]
g into [2]:	4X + 7(MX + C) = M(3X + 3(MX + C) + C)
equation:	$4X + 4MX + 6C = 3M^2X + 3MC$
	$X(-3M^2 + 4M + 4) + 3C(2 - M) = 0$
in <i>M</i> :	X(2-M)(3M+2) + 3C(2-M) = 0
hat values could <i>M</i> uation is satisfied? Se so that the <i>LHS</i> =	$M = 2 \Rightarrow C$ could be anything. So $Y = 2X + C$ is an invariant line for any C.
	M = -2/3 AND $C = 0$ would also satisfy the

